

Review Article

The Oncodarwinian Hypothesis: Cancer as a Potential Immunoadaptive Response and Artificial Intelligence-based 3D Printed p53 Superproteins

Antonio Araújo*

Institute of Mathematics and Statistics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil

Received: August 16, 2025 | Revised: November 10, 2025 | Accepted: November 26, 2025 | Published online: January 22, 2026

Abstract

This review presents the Oncodarwinian Hypothesis, which proposes a new medical paradigm: that of cancer as a potential macro-immunoadaptive response (susceptible to fine-tuning or reprogramming/management via artificial intelligence-based 3D printed p53 superproteins). A traditional hypothesis-generation method was adopted; it entails observing a biophenomenon longitudinally (tumor-precursor out-of-control cell division), formulating and refining targeted research questions, and then, rooted in a prior interdisciplinary theoretical framework, outlining (per deductive reasoning) a testable answer or statement apt to predict outcomes. Two main theoretical findings emerge from this review: the plausibility of a wireless p53 superprotein molecular biochip (3D printed) and cancer cells' dual-focus immunological nature. It will be necessary to approach the key issue and prognosis of (supposedly meaningless) uncontrolled cell division in a different light. Basically, the same dis-easing cancer also constitutes a self-replicating immunoadaptive algorithm that needs to be deciphered. An interdisciplinary quest to unravel its "source code" involves genomic palaeontology and learning the natural selection programming language – for developing (personalized) artificial intelligence-assisted p53 superproteins.

Introduction

Is cancer ontologically just a disease? What if we are misrepresenting it? Has rationalist pathology (or science's unimaginative specialization) eclipsed a broader perspective of cancer as a response/expression of evolutionary biology? In this context, is it theoretically permissible to approach cancer as some immunoadaptive endeavor (autopoiesis) of healing, or at least of coping with exogenous/endogenous risk factors, despite its absence of control?

A traditional hypothesis-generation method was adopted,¹ which entails observing a biophenomenon longitudinally (tumor-precursor out-of-control cell division), formulating and refining targeted research questions, and then, rooted in a prior interdisciplinary theoretical framework, outlining (per deductive reasoning) a testable answer or statement apt to predict outcomes. Thus, from

the earliest cancer records found on a 7th-century BC Egyptian papyrus — and Mukherjee's cancer historiography² — down to Muñoz-Castiblanco's 3D bioprinting,³ plus García-Reyes' and Bella's artificial intelligence (AI)-driven protein electrochemical chip engineering,^{4,5} across Fussenegger's genetic software computational biodesign,⁶ we begin to surface a consistent investigation landscape.

The goal is to address the above survey questions in order to substantiate our Oncodarwinian Hypothesis (OdH), which proposes a new medical paradigm: that of cancer as a potential macro-immunoadaptive response — susceptible to fine-tuning or reprogramming/management via AI-based 3D printed p53 superproteins. Such an autopsy of the illness–cancer binomial will be instrumentalized by a phenomenology of cancerous cells' biological creativity, suggesting the existence of a Darwinian "intelligence" of the cell cycle.

Cancer as biological fatalism

Cancer is expressed through uncontrolled cell division. Its onset and prognosis are usually linked to a series of alterations in the activity of cell cycle regulators, associated with risk factors: congenital conditions, infections, smoking, ageing, excessive exposure to solar radiation, alcoholic beverages, etc. For instance, cell cycle

Keywords: Cancer; Uncontrolled cell division; Oncodarwinian Hypothesis; Immunoadaptive response; Artificial intelligence-based 3D printed p53 superproteins; Cancer cells' dual-focus immunological nature.

*Correspondence to: Antonio Araújo, Institute of Mathematics and Statistics, Federal University of Bahia (UFBA), Salvador, Bahia 40170-115, Brazil. ORCID: <https://orcid.org/0000-0003-1077-0255>. Tel: +55-71-98822-0110, E-mail: lawtec@gmail.com

How to cite this article: Araújo A. The Oncodarwinian Hypothesis: Cancer as a Potential Immunoadaptive Response and Artificial Intelligence-based 3D Printed p53 Superproteins. *Explor Res Hypothesis Med* 2026;11(1):e00041. doi: 10.14218/ERHM.2025.00041.

inhibitors prevent cells from dividing when inopportune, so low activity of these inhibitors may trigger cancer. Similarly, positive regulators of cell division can lead to cancer if they are too active.⁷ In most cases, such changes occur due to mutations in the genes that code for cell cycle regulatory proteins.⁸

The cancer cell (CC) has distinct properties compared with other cells. Many of these differences are related to its circumstantial behavior during cell division. Indeed, CCs can multiply in a petri dish without the addition of growth factors or growth-promoting protein signals. In contrast, normal cells require growth factors to divide in culture.⁹ Furthermore, CCs manufacture their own growth factors. They also show growth factor pathways stuck in the “on” position.¹⁰ Within the body, CCs induce neighboring cells to produce growth factors to support them.¹¹

A lab-grown normal cell is surrounded by several neighboring cells, whose presence blocks division (contact inhibition). However, CCs ignore the signals that should interrupt their division and pile up on top of each other in irregular layers. It is obvious that the ecosystem of a petri dish differs from that of a human body. However, the oncological literature speculates that the loss of contact inhibition in CCs outside the organism reflects the switching off or inactivation of a mechanism in charge of directing tissue balance in the body.¹²

This replicative perennization/immortality is a hallmark that identifies CCs, allowing us to understand their functioning and latent potential. They divide many times more than a normal cell, which performs about 40–60 rounds of replication before losing such capacity, ageing, and dying.^{13,14} CCs can exponentially outpace the average division rate of other cells mainly because they express the enzyme telomerase, whose assignment is to reverse the fraying (usual during each cell division) of the chromosome ends.^{15,16}

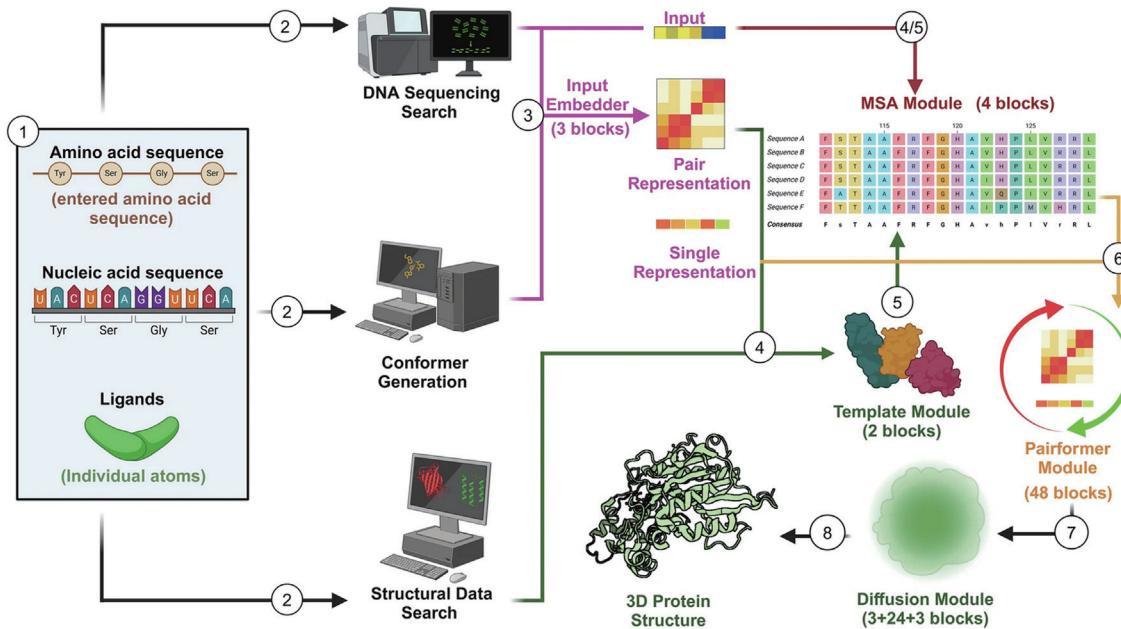
There are differences between CCs and non-cancerous cells that do not relate directly to the cell cycle, but to the genesis of tumors. The CC is able to migrate (metastasis) to other parts of the body, as well as increase its own supply chain by forming new blood vessels (angiogenesis), which optimizes the logistics of inputs — oxygen and nutrients — to tumor cells.¹⁷ In addition, CCs do not manifest programmed cell death (apoptosis), at least not under the same conditions as normal cells, for example, due to DNA damage. Recent studies have also provided evidence that CCs experience metabolic changes that interfere with and amplify or potentiate their growth and division.¹⁸

Cells are programmed to restrict their own division, repair DNA, and prevent cancer etiology. Hence, presumably, cancer is a multi-step process in which several containment barriers (or defense lines) must fail before a critical mass forms and cells become cancerous. Most cancers arise when cells undergo a series of mutations (changes in DNA) and begin to divide more rapidly, escaping the internal and external controls of that division and thus avoiding predestined cell death.¹⁹ How does this whole circuit of events unfold? Hypothetically, a cell might first lose the activity of a cell cycle inhibitor, causing its descendants to divide slightly faster. Such offspring are unlikely to be cancerous but may constitute a benign tumor: a mass of cells that, although they divide excessively, do not have the potential to invade other tissues or promote metastasis.²⁰

Over time, a cell may experience enough mutations to expand the action of positive regulators of the cell cycle, giving rise to CCs and a malignant tumor capable of invading other tissues. In general, the mitotic progression of this same tumor leads to the ever-greater spread of mutations in its cells.²¹ Advanced-stage can-

cers tend to develop major changes in their genomes, including large-scale mutations such as the loss or duplication of entire chromosomes.^{22,23} They appear to result from inactivating mutations in genes that keep the genome stable, precisely by blocking the onset, transfer, and proliferation of mutations.^{24,25}

These genes encode proteins that sense and repair DNA damage or faults, intercept DNA-binding chemicals, preserve telomere caps at the ends of chromosomes, and play other key maintenance roles. If one of them (genomic stability factors) turns out to be mutated and non-functional, it is possible for multiple mutations to accumulate rapidly in a progenitor cell. Then, its parental lineage may reach a critical mass of cancer-generating mutations. Different types of cancer involve distinct classes of mutations, and each individual tumor displays a unique set of genetic alterations.^{26,27} However, mutations in two kinds of cell cycle regulators usually induce cancers: (i) overactivation of positive regulators, which become oncogenic; and (ii) inactivation of negative regulators, also labelled tumor suppressors.²⁸


In CCs, a growth factor receptor gene may send signals even when there are no growth factors, or cyclin (a family of proteins that controls the cell's advancement through its cycle by activating enzymes such as kinases) may be expressed at alarming levels. The hyperactive versions and copies of these genes — cancer vectors — correspond to oncogenes, while their not-yet-mutated forms define proto-oncogenes.²⁹

Mutations that convert proto-oncogenes into oncogenes follow varied routes. Some of them modify the amino acid sequence of the protein itself, changing its shape and locking it into an “always-on” status. Other mutations imply replicative elasticity, in which a cell acquires extra copies of a gene and starts producing too many proteins. There are also cases in which a failure in DNA repair connects the proto-oncogene to a foreign gene, yielding an unruly “combo” protein.³⁰

A large number of Ras proteins — regulators of signal transduction and targets for cancer treatments and therapies — that convey signaling enzyme (or growth factor) signals are encoded by proto-oncogenes. Ordinarily, these proteins direct cell cycle progression only when growth factors are available. However, if one of them becomes overactive due to mutations, it transmits signals even when there is no growth factor.³¹ For example, oncogenic Ras mutations can be found in approximately 90% of pancreatic cancers.³² Ras is a G-family protein acting as a binary molecular switch. It alternates between an inactive mode (bound to a small guanosine diphosphate molecule) and an active mode (linked to a similar molecule, guanosine triphosphate). Carcinogenic mutations often change the Ras structure so that it loses the ability to revert to the inactive form or remains stuck in a “non-stop proliferation” maze.³³

As for negative regulators of the cell cycle (tumor suppressor genes), they become less active — perhaps non-functional — in CCs.³⁴ In this case, a protein that breaks cell cycle development in response to DNA damage may no longer detect it or may fail to respond properly, preventing the suppression of cancerous tumors. An important tumor suppressor is the p53 protein, which performs a key function in DNA repair. This protein acts primarily at the G₁ end (controlling the transition from G₁ to S), where it blocks cell cycle advancement in response to corrupted DNA and other unfavorable conditions.³⁵

When a cell's DNA is injured, a sensor protein activates p53, which triggers the production of a cell cycle inhibitor, interrupting the cycle at the end of G₁. This pause allows time for DNA remediation, also dependent on p53, whose second priority is to

Fig. 1. AlphaFold 3's artificial intelligence (AI) biomolecule prediction/design scheme. Source: Garcia-Reyes and colleagues.⁴ “AlphaFold 3 can predict the structure of proteins, DNA/RNA molecules, and ligands. 1) Once a sequence has been entered, 2) the software concurrently engages with multiple databases to assess potential genetic sequences, conformational prototypes, and structural configurations. 3) The input embedder then uses the sequencing and conformer information to encode and generate a composite that results in a single and pair representation. 4) The template module then integrates known structures obtained from the structural data search into the pair representation. 4/5) In tandem, the Multiple Sequence Alignment (MSA) Module incorporates the sequencing, pair representation, and template models to iteratively build novel base templates. 6) From here, the pairformer module uses MSA information to test different interacting elements, refining the predicted molecule interactions and repeatedly updating the pair and single representations. 7) Finally, the diffusion module applies and removes noise into the algorithm to improve local stereochemistry and global structures.”

activate DNA recovery enzymes.¹⁶ If the damage is rectified, p53 will release the cell, permitting it to proceed through the cell cycle. Should the lesion not be corrected, p53 will command its third and final mission: to initiate apoptosis (programmed cell death) in order not to pass on damaged DNA.³⁶

In CCs, p53 is absent, non-functional, or less active than normal. Many cancerous tumors have a mutated expression of p53 that may no longer bind to DNA. As p53 acts by binding to target genes and propelling their transcription, the unbound mutant protein is unable to fulfill its scope.³⁷

Therefore, when p53 is deficient, a cell with tampered DNA divides, and its replicas will inherit mutations due to unrepaired DNA from the parent cell. Over generations, cells containing defective p53 accumulate mutations that (i) convert proto-oncogenes into oncogenes, or (ii) disable other tumor suppressors. CCs without mutations in p53 have probably inactivated it via alternative mechanisms (e.g., heightened intervention of p53-neutralising proteins).³⁸

Cancer as biological creativity and AI-based 3D printed p53

Let's delve into a paradigm that presupposes an essential cancer propaedeutic, whose cell division is only uncontrolled until we learn to control it. However, the construction of knowledge inducing cell division governance has been postponed or impaired by the dogma (or premise) of this same cell splitting as an anomalous and ontologically pathogenic process — rather than an attempt at a specific, individual, and adaptive immune response to risk factors. In our OdH, one must simply learn to manage such an attempt.

Although biotechnology prefers to fight back, decrease, mitigate, and does not know how to fully control this immunoreaction,^{39,40} it

may soon be susceptible to manipulation or direction by nano-bioengineering, in a disruptive breakthrough concerning cell replacement. This represents a feasible challenge within an interdisciplinary environment based on cooperation (mutually reinforcing feedback) with 3D bioprinting and biocomputing technologies.⁴¹

On this point, a promising intervention field remains the evidence that the p53 protein encodes the most frequently mutated gene in human cancers.²³ It is speculated that biocomputing research could have already been encouraged, aiming at remodeling and printing nanostructures of creative or self-taught (tumor suppressor) p53 proteins, inoculated — via a tailor-made molecule delivery method — by viruses with an oncogenic tracer (e.g., a marker for overactive Ras proteins), to carry out a key task in DNA repair.

As a low-cost, easy-to-use pre-printing experimental protocol (according to our expertise in progress), it is advisable to download a p53 protein molecule file from the *Protein Data Bank* (PDB) via the internet by searching for “<molecule name> PDB File”.⁴² Import such a PDB file into *MoluCAD* (File → Import → PDB File),⁴³ a free-to-download software with a non-complex learning curve — where p53 protein molecules might also be drawn or modelled, instead of downloading from the PDB. Although PDB files accept direct import into *Blender* (a free and open-source 3D creation suite for editing PDB files),⁴⁴ note that atoms are often loaded without bonds.

Once the PDB file has been drawn in or imported into *MoluCAD*, export its output (File → Export → PDB File) to *Blender* through an add-on dubbed *Atomic Blender* (integratable with protein-designer AIs, e.g., *AlphaFold 3*) (Fig. 1).^{4,45} The next level involves using *Blender* to reconfigure or customize p53 protein molecules (PDB files), converting them (PDB File → OBJ File) into

a wireless p53 superprotein molecular chip (p53-MoleChip),^{46,47} i.e., p53-MoleChips able to decode and transmit specific tumor genesis signals online with an AI algorithm (a smart bet could be to calibrate or train *ChatGPT* for this role) which,⁴⁸ by autonomously diagnosing these signals (under physicians' mobile monitoring), will deliver guidelines for repairing or activating tumor suppression or containment components.

Having set the scale and additional parameters of the p53-MoleChip saved as an OBJ file, 3D printing is about to begin. Depending on p53-MoleChip geometry and complexity, support software (e.g., *Meshmixer*) will be required to print it successfully.⁴⁹ Freely downloadable, *Meshmixer* not only generates printing support but also allows the user to execute molecular rescaling. Then choose export or print as an STL file.

Anthony Atala and colleagues introduced the challenge of 3D printing and therefore the predictive dilemma of intelligent life production lines,⁴¹ counterposing an elegant mirror to medicine. Léo Pio-Lopez follows him, exploring a connected issue: how would an artificially manufactured human being behave?^{50,51} In this regard, the prototyping of (non-rejectable) personalized p53 simulacra may illustrate the next evolutionary step towards understanding cancer as a chance for cell cycle governance, which presupposes re-signifying or recycling the malignancy of a tumor.

We are facing the convergence of oncoengineering's multiple synapses. Martin Fussenegger learns to program or control gene expression in response to ribonucleic acids (RNAs) as genetic software, using protein-anchored central processing units. Furthermore, he has built and deployed — inside lab-grown cells — a dual-core central processing unit combining two orthogonal processors in a single cell to compute and metabolize a wide range of RNA inputs.⁵² This represents an opportunity to master and design the algorithmic architecture (for nanoimplantation into CCs) of “intelligent” p53: synthetic, printable, AI-based superproteins that constantly adapt (self-learn), updating their tumor suppressor status.

Consider a human tissue with billions of cells, each one having its own organically integrated dual-core processor, i.e., molecular microprocessors fabricated by 3D printing and implanted in lab-grown cells, whose level of accuracy would be able to perform a wide range of (individual bits) bitwise computations, allocating biochemical logic gates to a surgical repair arithmetic.^{6,53,54} In principle, this tissue would acquire an unprecedented processing capacity,^{55,56} far superior to that of a digital supercomputer, while consuming less energy.^{57–59}

By enabling rational programming of mammalian single-cell behavior, circuit-synthetic biology drives innovation across multicore-based design, which may detect and encourage proteomic biocomputing opportunities (with highly accurate protein sequencing prediction) to provide applications in cancer management and handling.^{52,60–65}

OdH arises from the spectrum of Evolutionary Medicine (EM), which is also often referred to as “Darwinian Medicine”. This new medical approach delves into the conceptual framework of evolution by natural selection to comprehend even human cell health.^{63,64} In other words, EM can explain uncontrolled cell division and disease via evolutionary or historical causes. The high frequency, for example, of alleles related to sickle cell anaemia, especially among Afro-descendants, could only be properly understood after identifying the role of these same alleles in malaria resistance within endemic regions.⁶³

According to EM, the human body is not defect-free, despite all its sophistication, and our body's evolutionary adaptations appear to stem from selective natural processes that, today, would have

made an organism perfectly adapted to survival.^{65,66} However, historically, these adaptations are vulnerable for at least two reasons: (i) environmental circumstances modify over the course of paleontological time, and so fitness changes too; and (ii) due to the limits of natural selection. On the other hand, human existence spaces are permeated or shared with risk factors and countless biological species, including pathogens that adapt to humans as their habitat.⁶⁷

Functional biological properties derive from evolutionary processes, mainly adaptive ones. Every detail of the physiological or behavioral structure that has a current (or past) function or utility must be the result of natural selection processes acting on intra-populational genetic variation. Consequently, it is acceptable to re-signify the idea of “uncontrolled cell division” as maladjustments of the body to modern risk factors, reflecting vulnerabilities of adaptations bequeathed by our phylogenetic heritage.⁶⁸

Adaptive maladjustments arise because natural selection gradually and slowly reprograms human bodies (from primate ancestors) considering an environment or lifestyle — e.g., devoid of a significant smoking prevalence — that no longer exists, and there was no chance or time to adjust to the novel living conditions by natural selection.⁶⁷ In this scenario, a complete prospecting or demonstration of OdH presupposes decoding, through further research, certain vulnerabilities (potentialized by risk factors) intrinsic to the evolutionary history of the cell cycle itself.

Many interesting and important controversies remain unresolved within the Darwinian model of carcinogenesis. For example, tumor evolution is often portrayed as a linear sequence of genomic mutations and epigenetic changes synchronous with progressive drift of cellular populations from normal through premalignant lesions to invasive cancer. This approach, however, while useful conceptually and pedagogically, is highly simplified, ignoring, for example, the stochastic nature of mutations, mitigating intracellular processes such as the chaperone function of heat shock proteins, and extracellular factors such as the potential influence of microenvironmental selection factors. Similarly, the role of the mutator phenotype remains unclear.⁶⁹

OdH: CCs' dual-focus immunological nature

Latest studies (borderline to our specific hypothesis), found through Google Scholar surveys using keywords (e.g., “cancer as immunoadaptive reply”, “cell intelligence”), support cancer as an evolutive process which may elicit, become a target of, deflect, and resist immunoadaptive responses.^{70–77} However, as stated earlier, the OdH assumes cancer is itself immunoadaptive; it involves an ongoing evolutive, non-pathological process (self-learning path) whose goal consists of adapting cell division biochemistry to epigenetics-reflected environmental or behavioral risk factors, such as diet, radiation, tabagism, sedentary lifestyle, etc.

Thus, cancer would not merely be the random target of a chain immune reaction (micro-immunological perspective) — since “immune evasion” allows tumors to bypass immunomodulation and tumor suppression attempts⁷¹ — but rather part of an immunoadaptive response or journey (macro-immunological perspective) at an evolutionary timescale, equivalent to geological chronology in wide or deep intervals (eon, era, period, and epoch) (Fig. 2).⁷⁸ As per fossil stratigraphy,⁷⁹ *Homo sapiens* (a baby in evolutionary dating) arose within the current geological period (Quaternary) around 200,000 years ago, and some of the earliest cancer records were found on a 7th-century BC Egyptian papyrus.² So far, a very short time in Darwinian terms.

From an integrative (dual-focus) approach to these macro- and

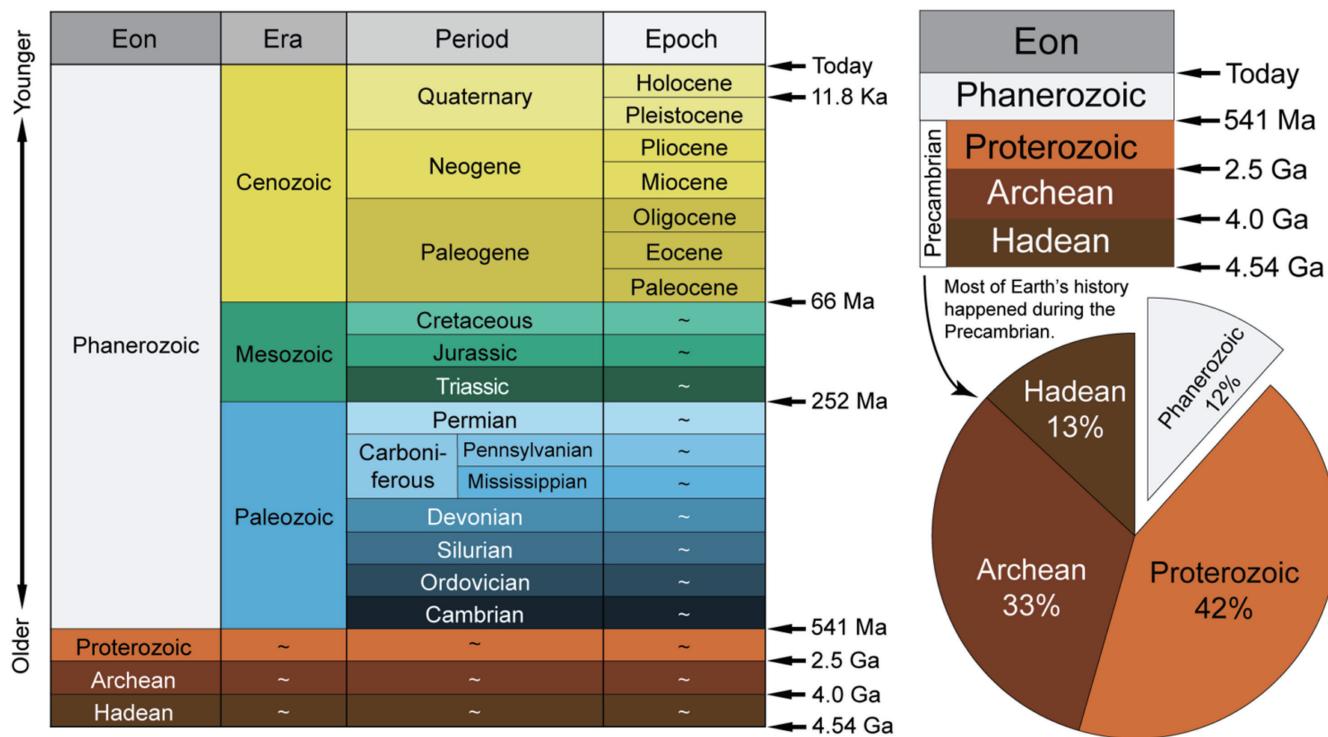


Fig. 2. Geological timescale. Source: Hendricks.⁷⁸

micro-immunological dimensions, our hypothetical model (OdH) formulates and suggests that cancer, unlike how it has been diagnosed for millennia, corresponds to a pathological stage of a non-pathological immunoadaptive self-learning process. Somehow, this hypothesis (OdH) portrays the serialist *ratio* of Marx's and Engels' historical materialism, whereby the capitalist production system represents a necessary step towards communism (the overflow of historical materialism from sociology into biological sciences has long been occurring,⁸⁰⁻⁸² analogously, but in the opposite direction, to social Darwinism).

Under such circumstances, in theory, it is expected that AI-run 3D printed p53 superproteins collaborate with and speed up this macro-immunological cancer dimension as adaptive "cell intelligence"⁸³ while synchronously reinforcing tailored oncotherapies at the micro-immunological level. In any case, as far as is known, OdH seems to translate a radically innovative hypothesis, not yet incorporated into standard literature or covered by current discoveries or preliminary research findings. Always a first time.

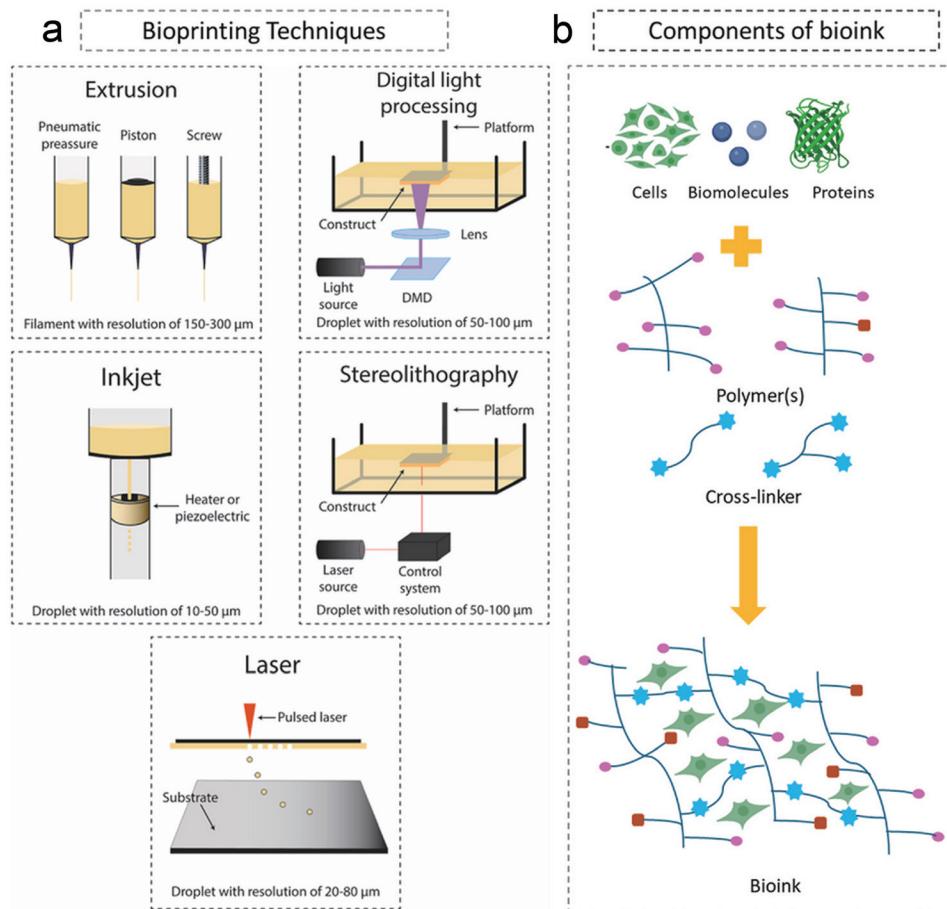
AI-environmented 3D protein printing: a graphical immersion

A comprehensive (or in-depth) analysis of AI-based 3D printed p53 superproteins includes, with regard to *AI-driven protein design* (Figs. 1 and 3),^{4,84-97} and *3D bioprinting* (Fig. 4),^{3,98-101} highlighting their potential accuracy and feasibility with respect to the following variables (Table 1).

AI-designed p53: clinical translation and possible limitations/biases

Relative to clinical translation, how could AI-engineered p53 su-

perproteins enhance current oncotherapies? Bacteria and viruses' potential to selectively replicate in tumors prompted microbial cancer treatments amid synthetic bioengineering.¹⁰²⁻¹¹¹ An impressive study (from 2025), conducted by scholars at Columbia University, describes a symbiotic ecosystem "whereby [attenuated] *Salmonella typhimurium* bacteria transcribe and deliver the Senecavirus-A RNA genome inside host cells, launching a potent oncolytic viral infection".¹¹²


Hypothetically, such transcription or delivery might also aggregate AI-based 3D printed p53 superproteins. In fact, encapsulated within bacteria, viral genomes and synthetic p53 would further evade circulating antiviral antibodies to reach tumors, where they will trigger replication or dissemination in already immunized organisms (Fig. 5, per analogy).¹¹²

Until the efficacy of AI-based 3D printed p53 superproteins is proven, this review paper will remain partly confined to speculative territory (limitation), something typical of disruptive proposals. Let us consider another example. Einstein, who for years worked at Bern's Federal Bureau of Patents, mathematically predicted (1905) that during light ray propagation emitted by a point source, energy is not distributed continuously over larger and larger spaces but is comprised of a finite number of energy quanta located at space spots, each one moving without splitting and only being absorbed or generated in blocks. The concept of the photon — the name given to the light quantum after 1926 — was born, and with it the modern quantum physics era (however, years would pass before Einstein's equation was validated in 1915 for experiments carried out by American physicist Robert Millikan).¹¹³

Here, there could be confirmation bias, i.e., the tendency to interpret or seek information that corroborates a hypothesis,¹ whilst ignoring or disregarding evidence liable to contradict it. Preventing such bias demanded compilation of references with a broad

Fig. 3. Comparison of traditional vs. artificial intelligence (AI)-run biomolecule design pipelines. Source: García-Reyes and colleagues.⁴ (a) Traditional timeline for creating new drugs. a1-5) Partitioned timeline showing major categories of drug development (vivid colors). Subcategories describing unique elements are below major categories. Overall timeline from drug candidate identification to approval is ~10–15 years. (b) Projected timeline for creating new drugs with AI assistance. b1-5) Same as a1-5, but with notably shorter durations driven by continued AI optimization at each step. Generative AI models based on validation and clinical evidence can enhance the trajectory to approval by ~3 years.”

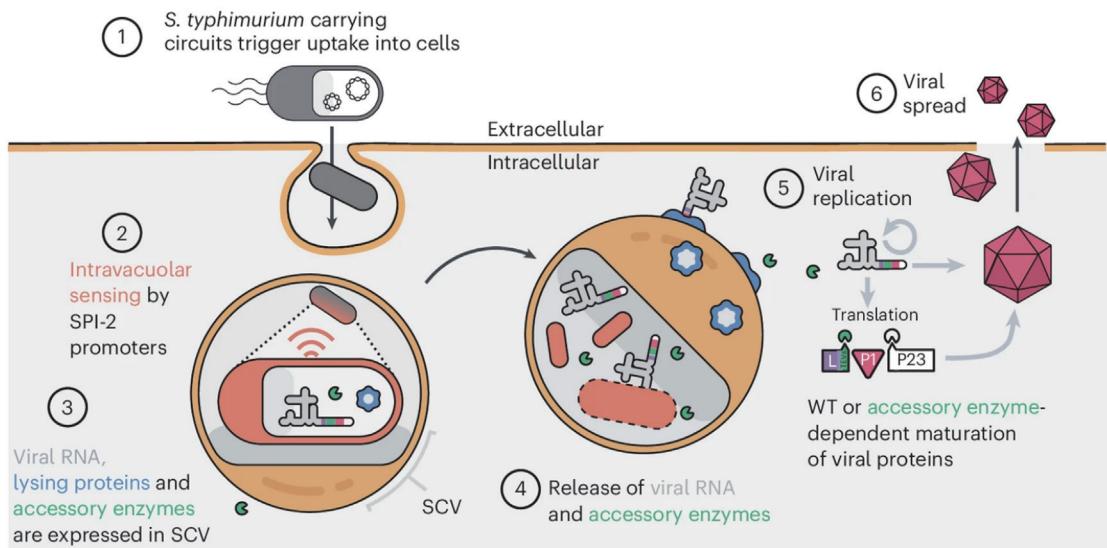


Fig. 4. 3D bioprinting. Source: Muñoz-Castiblanco and colleagues.³ DMD, digital micromirror device.

Table 1. Projections upon the AI-assisted 3D printed p53 superproteins

AI-driven protein design		3D bioprinting
Operational constraints	How to integrate cutting-edge AI tools (e.g., AlphaFold 3) into bespoke synthetic protein workflows (no digital hallucinations), including devices for structural and functional prediction, beyond generative language models in molecular design	Challenges arising from variability in molecular properties, besides cross-linking efficiency (polymer chains joining to build a stable, resistant 3D network), emphasize the urgency of a protocol/method for determining standard bioinks. Type of bioinks: <i>natural polymers as inks</i> (gelatin; collagen; silk; fibrin; alginate, an anionic polysaccharide found in seaweeds; hyaluronic acid-based; chitosan), <i>decellularized extracellular matrix as inks</i> , and <i>synthetic polymer-based inks</i> (pluronic; PEG-based hydrogels; poly-lactic-co-glycolic acid, or PLGA; poly-ε-caprolactone, or PCL; polyurethane; poly-vinyl alcohol, or PVA)
Theoretical challenges	Deciphering (AI-based) the vast complexity of protein sequence space and overcoming structural/functional data limitations	Increase the versatility or autonomy of bioprinting so as to solve challenges through generative self-learning (AI-run), establishing a symbiotic and interchangeable nexus between 3D printers (fed bioinks made from bioprintable materials mixed with living cells), and 4D bioprinting, employing thermal-, electric field-, pH-, magneto- and photoresponsive (smart) polymers in self-assembly
Development schedule	Protein engineering made remarkable progress over the last decade. The priority — regarding a plausible schedule — for the coming decade will perhaps be to migrate from <i>protein design</i> (still focused on α-helix bundles, limiting its potential towards generating sophisticated enzymes, small molecules, and diverse protein ligands) into <i>proteomic engineering</i> , targeting an inter-relational (of governing dynamics) and large-scale analysis centered on protein structure, function, sequence, modifications, and interactions, to further advance concerning: (i) complex eukaryotic protein stability/activity; (ii) antigen generation for vaccines, antivirals; (iii) nanovehicle computational architecture used in drug delivery	The next five years will prove decisive for consolidating 3D bioprinting techniques that use bioinks based on natural macromolecules (NMs). NMs play a key role due to their ability to mimic, simulate, or mirror the extracellular matrix, increasing tissue adhesion and integration (i.e., with decreased histological rejection), enabling the precise manufacturing of tissue-like structures, as well as significant gains in personalization/customization and scalability to benefit regenerative medicine, drug testing via 3D models, and organ transplantation
Improvement demands	Train/validate AIs which deliver accuracy and speed in novel protein design (with customized functions) to unlock enzymatic mechanisms and reprogram biomolecular systems — shortening or optimizing experimental cycles	Among emerging trends in 3D bioprinting, the most promising seems to be hybrid bioinks, which combine natural macromolecules (NMs) with extracellular matrix components, associating them with polymers and cross-linkers (structural integrity vectors)
Verification methods	It was necessary to address unreliability in exclusively structure-anchored design methods, which limited their application and, hence, the development of more impactful therapeutic interventions (via high-complexity synthetic protein molecules). Indeed, recent methodological strategies combining structure- and sequence-level calculations, plus machine learning tools, have exponentially improved protein engineering	Extrusion-format 3D bioprinting using customized bioinks now ranks as the top method (extrusion denotes mechanical process whereby materials get forced through a cylindrical die or mold to acquire preset shapes)

AI, artificial intelligence; PEG, polyethylene glycol.

Fig. 5. Dose-related toxicity microbe consortium as an oncotherapeutic scheme for viral genomes/proteins in host cytoplasm. Source: Singer and colleagues.¹¹² (1) *S. typhimurium* carrying synthetic circuits enter mammalian cells via natural effectors encoded on *Salmonella* pathogenicity island 1 (SPI-1). (2) Internalized *S. typhimurium* within a *Salmonella* containing vacuole (SCV) sense the intravacuolar space and trigger activation of SPI-2 promoters. (3) Engineered SPI-2 promoters are then used to drive the production of viral RNAs (poliovirus replicon, Senecavirus A (SVA) or engineered SVA), lysing proteins hemolysin E (HlyE) and E from phage ϕ X174, and accessory enzyme. (4) Upon successful bacterial and vacuolar lysis, viral RNAs and accessory enzyme are released into the host cytoplasm. (5) Wild-type (WT) viral RNAs are translated in the cytoplasm and viral replication is initiated. The maturation of viral particles may be engineered to require the accessory enzyme for complete maturation. (6) Infectious particles are released into the extracellular space to infect neighbouring cells. Since *S. typhimurium* bacteria act as a viral ‘capsid’, we have named the platform Coordinated Activity of Prokaryote and Picornavirus for Safe Intracellular Delivery (CAPPsiD).¹¹³

longitudinal and interdisciplinary spectrum.

Future directions

In the general context of what Miao Cui, Chao Cheng, and Lanjing Zhang would call “High-throughput proteomics”,¹¹⁴ the development of a protocol for the clinical translation only sketched out in the previous section clearly recommends a forward direction to specific viability tests around p53 viral protein as an AI-run wireless “electrochemical biochip” (3D printed)⁵ signalling routes for its experimental validation, interdisciplinary partnerships, and long-term research aims. A premise is that once comparative statistical significance (overall, $\alpha = 0.05$, assuming a 95% confidence interval and p -value < 0.05) of AI-customized p53 in tumor inhibition, containment (no metastasis), or prevention has been shown, the OdH will gather traction to bridge major knowledge gaps surrounding CCs’ macro-immunoadaptive (non-pathological dimension) responsiveness and resilience — properties collaterally inferable from well-established literature at the onco-Darwinian interface (Evolutionary Theory of Cancer).^{115–117}

Conclusions

Regarding cancer, we must overcome the dogma or diagnosis that defines it as nothing more than a disease whose malignancy and mutation collection mirror a constant: runaway cell division. Ultimately, what is fatal about cancer represents a one-dimensional dogma. Fighting this uncontrolled or cancerous cell division instead of learning to control it could be tantamount to killing or aborting a valuable evolutionary or regenerative mechanism.

It will be necessary to approach the key issue and prognosis of

(supposedly meaningless) uncontrolled cell division in a different light. Basically, for the OdH, the same diseasing cancer also constitutes a self-replicating immunoadaptive algorithm that needs to be deciphered. The interdisciplinary quest to unravel its “source code” involves genomic palaeontology and learning the natural selection programming language — for developing (personalized) AI-based 3D printed p53 superproteins.

Acknowledgments

I would like to express my special gratitude to Lanjing Zhang and Amy Xu for their constructive suggestions and rigorous editorial treatment.

Funding

The author declares no funding.

Conflict of interest

The author declares no conflict of interest.

Author contributions

AA is the sole author of the manuscript.

References

[1] Packer M. The hypothesis: a new article type and platform for iconoclasts in medicine. Eur Heart J 2025;46(8):685–686. doi:10.1093/eu-

rheartj/ehae770, PMID:39714777.

[2] Mukherjee S. *The Emperor of All Maladies: A Biography of Cancer*. New York, NY: Scribner; 2010.

[3] Muñoz-Castiblanco T, Moreno-Marín J, Osorio M. Natural macromolecule-based bioinks for 3D bioprinting: a systematic review of composition, physicochemical characterization, and biomedical applications. *Bioprinting* 2025;48:e00407. doi:10.1016/j.bioprint.2025.e00407.

[4] García-Reyes RA, Massó Quiñones LN, Ruy H, Castro DC. Neuropsychopharmacology in the era of artificial intelligence and biomolecule prediction software. *NPP Digit Psychiatry Neurosci* 2025;3(1):16. doi:10.1038/s44277-025-00038-9, PMID:40606791.

[5] Bella G, Calorenni P, Yadav N, Sciuto EL, Messina AA, Buonassera K, et al. Development of a miniaturized electrochemical biochip. *Front Lab Chip Technol* 2025;4:1611743. doi:10.3389/flct.2025.1611743.

[6] Angelici B, Shen L, Schreiber J, Abraham A, Benenson Y. An AAV gene therapy computes over multiple cellular inputs to enable precise targeting of multifocal hepatocellular carcinoma in mice. *Sci Transl Med* 2021;13(624):eab4456. doi:10.1126/scitranslmed.eab4456, PMID:34910545.

[7] Pardee AB. A restriction point for control of normal animal cell proliferation. *Proc Natl Acad Sci U S A* 1974;71(4):1286–1290. doi:10.1073/pnas.71.4.1286, PMID:4524638.

[8] Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. *Proc Natl Acad Sci U S A* 1985;82(16):5365–5369. doi:10.1073/pnas.82.16.5365, PMID:3860868.

[9] Schwarz C, Johnson A, Kővőmági M, Zatulovskiy E, Kravitz CJ, Doncic A, et al. A Precise Cdk Activity Threshold Determines Passage through the Restriction Point. *Mol Cell* 2018;69(2):253–264.e5. doi:10.1016/j.molcel.2017.12.017, PMID:29351845.

[10] Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. *Cell* 2013;155(2):369–383. doi:10.1016/j.cell.2013.08.062, PMID:24075009.

[11] Okubo S, Mezawa Y, Wang Z, Acar A, Ito Y, Takano A, et al. Endoglin mediates the tumor- and metastasis-promoting traits of stromal myofibroblasts in human breast carcinomas. *Mol Oncol* 2025;19(9):2557–2573. doi:10.1002/1878-0261.70074, PMID:40644310.

[12] Blagosklonny MV, Pardee AB. The restriction point of the cell cycle. *Cell Cycle* 2002;1(2):103–110. doi:10.4161/cc.1.2.108, PMID:12429916.

[13] Yao G, Lee TJ, Mori S, Nevins JR, You L. A bistable Rb-E2F switch underlies the restriction point. *Nat Cell Biol* 2008;10(4):476–482. doi:10.1038/ncb1711, PMID:18364697.

[14] Yao G, Tan C, West M, Nevins JR, You L. Origin of bistability underlying mammalian cell cycle entry. *Mol Syst Biol* 2011;7:485. doi:10.1038/msb.2011.19, PMID:21525871.

[15] Welfer GA, Freudenthal BD. Recent advancements in the structural biology of human telomerase and their implications for improved design of cancer therapeutics. *NAR Cancer* 2023;5(1):zcad010. doi:10.1093/narcan/zcad010, PMID:36879683.

[16] Vishwakarma K, Dey R, Bhatt H. Telomerase: A prominent oncological target for development of chemotherapeutic agents. *Eur J Med Chem* 2023;249:115121. doi:10.1016/j.ejmech.2023.115121, PMID:36669398.

[17] Brooks RF. Cell Cycle Commitment and the Origins of Cell Cycle Variability. *Front Cell Dev Biol* 2021;9:698066. doi:10.3389/fcell.2021.698066, PMID:34368148.

[18] Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. *Cells* 2021;10(5):1056. doi:10.3390/cells10051056, PMID:33946927.

[19] Brooks RF. Commentary: locating the restriction point. *Cell Div* 2023;18(1):2. doi:10.1186/s13008-023-00085-8, PMID:36765359.

[20] Chung M, Liu C, Yang HW, Köberlin MS, Cappell SD, Meyer T. Transient Hysteresis in CDK4/6 Activity Underlies Passage of the Restriction Point in G1. *Mol Cell* 2019;76(4):562–573.e4. doi:10.1016/j.molcel.2019.08.020, PMID:31543423.

[21] Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T. Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry. *Cell* 2016;166(1):167–180. doi:10.1016/j.cell.2016.05.077, PMID:27368103.

[22] Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. *Cell* 2008;132(3):487–498. doi:10.1016/j.cell.2007.12.033, PMID:18267078.

[23] Wiebusch L, Hagemeier C. p53- and p21-dependent premature APC/C-Cdh1 activation in G2 is part of the long-term response to genotoxic stress. *Oncogene* 2010;29(24):3477–3489. doi:10.1038/onc.2010.99, PMID:20383190.

[24] Johnmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, et al. Necessary and sufficient role for a mitosis skip in senescence induction. *Mol Cell* 2014;55(1):73–84. doi:10.1016/j.molcel.2014.05.003, PMID:24910096.

[25] Cornwell JA, Hallett RM, der Mauer SA, Motazedian A, Schroeder T, Draper JS, et al. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis. *Sci Rep* 2016;6:27100. doi:10.1038/srep27100, PMID:27250534.

[26] Koepf DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. *Science* 2001;294(5540):173–177. doi:10.1126/science.1065203, PMID:11533444.

[27] Won KA, Reed SI. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. *EMBO J* 1996;15(16):4182–4193. doi:10.1002/j.1460-2075.1996.tb00793.x, PMID:8861947.

[28] Siu KT, Rosner MR, Minella AC. An integrated view of cyclin E function and regulation. *Cell Cycle* 2012;11(1):57–64. doi:10.4161/cc.11.1.18775, PMID:22186781.

[29] Beijersbergen RL, Kerkhoven RM, Zhu L, Carlée L, Voorhoeve PM, Bernards R. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. *Genes Dev* 1994;8(22):2680–2690. doi:10.1101/gad.8.22.2680, PMID:7958925.

[30] Ginsberg D, Vairo G, Chittenden T, Xiao ZX, Xu G, Wydner KL, et al. E2F-4, a new member of the E2F transcription factor family, interacts with p107. *Genes Dev* 1994;8(22):2665–2679. doi:10.1101/gad.8.22.2665, PMID:7958924.

[31] Singh A, Erijman A, Noronha A, Kumar H, Peleg Y, et al. Engineered variants of the Ras effector protein RASSF5 (NORE1A) promote anticancer activities in lung adenocarcinoma. *J Biol Chem* 2021;297(6):101353. doi:10.1016/j.jbc.2021.101353, PMID:34717958.

[32] Hu X, Zhang R, Yao J, Mu B, Zhao C. Wild-type KRAS inhibits the migration and invasion of pancreatic cancer through the Wnt/β-catenin pathway. *Mol Med Rep* 2023;27(1):4. doi:10.3892/mmr.2022.12891, PMID:36367161.

[33] Farcas A, Janosi L. GTP-Bound N-Ras Conformational States and Substates Are Modulated by Membrane and Point Mutation. *Int J Mol Sci* 2024;25(3):1430. doi:10.3390/ijms25031430, PMID:38338709.

[34] Hégarat N, Crnec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, et al. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. *EMBO J* 2020;39(11):e104419. doi:10.15252/embj.2020104419, PMID:32350921.

[35] Pomerening JR, Sontag ED, Ferrell JE Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. *Nat Cell Biol* 2003;5(4):346–351. doi:10.1038/ncb954, PMID:12629549.

[36] Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, et al. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. *Int J Mol Sci* 2024;25(23):12928. doi:10.3390/ijms252312928, PMID:39684639.

[37] Nathans JF, Cornwell JA, Afifi MM, Paul D, Cappell SD. Cell cycle inertia underlies a bifurcation in cell fates after DNA damage. *Sci Adv* 2021;7(3):eabe3882. doi:10.1126/sciadv.abe3882, PMID:33523889.

[38] Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. *Nat Rev Cancer* 2024;24(3):192–215. doi:10.1038/s41568-023-00658-3, PMID:38287107.

[39] Amsaveni S, Radha M, Chandrasekaran V, Chanchal DK, Mathew S, Sharma MC, et al. Immune Modulation Strategies in Gene Therapy: Overcoming Immune Barriers and Enhancing Efficacy. *Curr Gene Ther* 2025;25(4):374–393. doi:10.2174/0115665232305409240918040639, PMID:39360529.

[40] Alanazi J, Aleanizy FS, Alqahtani FY. Nanotechnology Approaches for

Mitigating Biologic Immunogenicity: A Literature Review. *Pharmaceutics* 2025;17(7):888. doi:10.3390/pharmaceutics17070888, PMID: 40733097.

[41] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. *Nat Biotechnol* 2016;34(3):312–319. doi:10.1038/nbt.3413, PMID:26878319.

[42] RCSB-PDB. Protein Data Bank. U.S. National Science Foundation. 2024. Available from: <https://www.rcsb.org/>.

[43] SpatialAnalyzer. MoluCAD. National Institutes of Health, U.S. Department of Health & Human Services. 2024. Available from: <https://www.kinematics.com/products/molucad.php>.

[44] Chlubna T, Vlnas M, Milet T, Zemčík P. Survey of FOSS 3D/2D graphics software blender usage in science, academia, and industry. *Vis Comput* 2026;42:95. doi:10.1007/s00371-25-04281-1.

[45] Kogut W. The analysis of Blender open-source software cloth simulation capabilities. *J Comput Sci Inst* 2023;26:83–87. doi:10.35784/jcsi.3091.

[46] Araújo A. From artificial intelligence to semi-creative inorganic intelligence: a blockchain-based bioethical metamorphosis. *AI Ethics* 2025;5:1859–1864. doi:10.1007/s43681-024-00471-0.

[47] Fuller CW, Padayatti PS, Abderrahim H, Adamiaik L, Alagar N, Ananthapadmanabhan N, et al. Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. *Proc Natl Acad Sci U S A* 2022;119(5):e2112812119. doi:10.1073/pnas.2112812119, PMID: 35074874.

[48] Wang J, Cheng Z, Yao Q, Liu L, Xu D, Hu G. Bioinformatics and biomedical informatics with ChatGPT: Year one review. *Quant Biol* 2024;12(4):345–359. doi:10.1002/qub.2.67, PMID:38562449.

[49] Cirrincione C, Guarnieri G, Morelli A. Digital Workflow with Open-Source CAD-CAM Software Aimed to Design a Customized 3D Laser-Printed Titanium Mesh for Guided Bone Regeneration. *Bioengineering* 2025;12(5):436. doi:10.3390/bioengineering12050436.

[50] Pio-Lopez L. The rise of the biocyborg: synthetic biology, artificial chimerism and human enhancement. *New Genet Soc* 2021;40(4):599–619. doi:10.1080/14636778.2021.2007064.

[51] Pio-Lopez L. Biopolitique et transhumanisme: Approches politique, sociale et stratégique. Master's thesis [Dissertation]. Lyon: Université Jean-Moulin Lyon; 2018. doi:10.13140/RG.2.2.29340.31365.

[52] Kim H, Bojar D, Fussenegger M. A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. *Proc Natl Acad Sci U S A* 2019;116(15):7214–7219. doi:10.1073/pnas.1821740116, PMID:30923122.

[53] Murphy SV, Atala A. 3D bioprinting of tissues and organs. *Nat Biotechnol* 2014;32(8):773–785. doi:10.1038/nbt.2958, PMID:25093879.

[54] Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. *Biomaterials* 2009;30(12):2164–2174. doi:10.1016/j.biomaterials.2008.12.084, PMID:19176247.

[55] Gooch HM, Bluett T, Perumal MB, Vo HD, Fletcher LN, Papacostas J, et al. High-fidelity dendritic sodium spike generation in human layer 2/3 neocortical pyramidal neurons. *Cell Rep* 2022;41(3):111500. doi:10.1016/j.celrep.2022.111500, PMID:36260998.

[56] Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR, et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. *Tissue Eng Part A* 2010;16(5):1749–1759. doi:10.1089/ten.TEA.2009.0650, PMID:20028232.

[57] Shapira S, Aizenbud I, Yoeli D, Leibner Y, Mansvelder HD, de Kock CJ, et al. Biophysical and computational insights from modeling human cortical pyramidal neurons. *Front Neurosci* 2025;19:1579715. doi:10.3389/fnins.2025.1579715, PMID:40703628.

[58] Morales Pantoja IE, Smirnova L, Muotri AR, Wahlin KJ, Kahn J, Boyd JL, et al. First Organoid Intelligence (OI) workshop to form an OI community. *Front Artif Intell* 2023;6:1116870. doi:10.3389/frai.2023.1116870, PMID:36925616.

[59] Durmus NG, Tasoglu S, Demirci U. Bioprinting: Functional droplet networks. *Nat Mater* 2013;12(6):478–479. doi:10.1038/nmat3665, PMID:23695742.

[60] Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. Amplifying genetic logic gates. *Science* 2013;340(6132):599–603. doi:10.1126/science.1232758, PMID:23539178.

[61] Gaber R, Lebar T, Majerle A, Šter B, Dobnikar A, Benčina M, et al. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. *Nat Chem Biol* 2014;10(3):203–208. doi:10.1038/nchembio.1433, PMID:24413461.

[62] Weinberg BH, Pham NTH, Caraballo LD, Lozanoski T, Engel A, Bhatia S, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. *Nat Biotechnol* 2017;35(5):453–462. doi:10.1038/nbt.3805, PMID:28346402.

[63] Cournoyea M. Ancestral assumptions and the clinical uncertainty of evolutionary medicine. *Perspect Biol Med* 2013;56(1):36–52. doi:10.1353/pbm.2013.0006, PMID:23748525.

[64] Méthot PO. Research traditions and evolutionary explanations in medicine. *Theor Med Bioeth* 2011;32(1):75–90. doi:10.1007/s11017-010-9167-4, PMID:21140228.

[65] Ewald PW. Evolutionary biology and the treatment of signs and symptoms of infectious disease. *J Theor Biol* 1980;86(1):169–176. doi:10.1016/0022-5193(80)90073-9, PMID:7464170.

[66] Alcock J. Emergence of Evolutionary Medicine: Publication Trends from 1991–2010. *J Evol Med* 2012;1:1–12. doi:10.4303/jem/235572.

[67] Plomp KA, Viðarsdóttir US, Weston DA, Dobney K, Collard M. The ancestral shape hypothesis: an evolutionary explanation for the occurrence of intervertebral disc herniation in humans. *BMC Evol Biol* 2015;15:68. doi:10.1186/s12862-015-0336-y, PMID:25927934.

[68] Varki A. Nothing in medicine makes sense, except in the light of evolution. *J Mol Med (Berl)* 2012;90(5):481–494. doi:10.1007/s00109-012-0900-5, PMID:22538272.

[69] Gatenby RA. Commentary: carcinogenesis as Darwinian evolution? Do the math! *Int J Epidemiol* 2006;35(5):1165–1167. doi:10.1093/ije/dyl192, PMID:16990285.

[70] Chen Z, Kim D, Wang J, Huang Q, Gao Y, Zheng J, et al. Adaptive immune responses associated with the progression of premalignant lesions to colorectal cancer. *Sci Rep* 2025;15(1):33369. doi:10.1038/s41598-025-17653-3, PMID:41023031.

[71] Tufail M, Jiang CH, Li N. Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches. *Signal Transduct Target Ther* 2025;10(1):227. doi:10.1038/s41392-025-02280-1, PMID:40739089.

[72] Han HS, Aldrich AL, Garg SK, Weinfurther RJ, Nguyen JV, Mo Q, et al. Alteration of the Tumor Microenvironment With Intratumoral Dendritic Cells Before Chemotherapy in ERBB2 Breast Cancer: A Nonrandomized Clinical Trial. *JAMA Oncol* 2025;11(2):119–127. doi:10.1001/jamaoncol.2024.5371, PMID:39636623.

[73] Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, et al. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. *Crit Rev Oncol Hematol* 2025;210:104702. doi:10.1016/j.critrevonc.2025.104702, PMID:40122356.

[74] Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. *Cell* 2024;187(9):2052–2078. doi:10.1016/j.cell.2024.03.037, PMID:38670065.

[75] Mantovani A, Garlanda C. Humoral Innate Immunity and Acute-Phase Proteins. *N Engl J Med* 2023;388(5):439–452. doi:10.1056/NEJMra2206346, PMID:36724330.

[76] Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. *Science* 2021;373(6561):1327–1335. doi:10.1126/science.abg5784, PMID:34529489.

[77] Ford BJ. Cellular intelligence: Microphenomenology and the realities of being. *Prog Biophys Mol Biol* 2017;131:273–287. doi:10.1016/j.pbiomolbio.2017.08.012, PMID:28847611.

[78] Hendricks J. Earth@Home project: The geologic time scale. Paleontological Research Institution. 2021. Available from: <https://earthathome.org/geologic-time-scale/>.

[79] Vidal CM, Lane CS, Asrat A, Barfod DN, Mark DF, Tomlinson EL, et al. Age of the oldest known Homo sapiens from eastern Africa. *Nature* 2022;601(7894):579–583. doi:10.1038/s41586-021-04275-8, PMID:35022610.

[80] Albers PC, James WR. Historical Materialism vs Evolutionary Ecology: A Methodological Note on Horse Distribution and American Plains Indians. *Crit Anthropol* 1986;6(1):87–100. doi:10.1177/03082

75X8600600107.

[81] Haldane J. Biology and Marxism. *Nature* 1938;142(3602):851. doi: 10.1038/142851a0.

[82] Allchin D. Marxism & Cell Biology: Can political perspectives enrich science? *The American Biology Teacher* 2008;70(5):303–305. doi:10.1662/0002-7685(2008)70[303:MCBCPP]2.0.CO;2.

[83] Ford BJ. On Intelligence in Cells: The Case for Whole Cell Biology. *Interdiscip Sci Rev* 2009;34(4):350–365. doi:10.1179/030801809X12529269201282.

[84] Koh HY, Zheng Y, Yang M, Arora R, Webb GI, Pan S, et al. AI-driven protein design. *Nat Rev Bioeng* 2025;3(12):1034–1056. doi:10.1038/s44222-025-00349-8.

[85] Listov D, Goverde CA, Correia BE, Fleishman SJ. Opportunities and challenges in design and optimization of protein function. *Nat Rev Mol Cell Biol* 2024;25(8):639–653. doi:10.1038/s41580-024-00718-y, PMID:38565617.

[86] Wang XY, Chen Y, Li YF, Wei CY, Liu MY, Yuan CX, et al. Advancing active compound discovery for novel drug targets: insights from AI-driven approaches. *Acta Pharmacol Sin* 2025;46(11):2865–2876. doi:10.1038/s41401-025-01591-x, PMID:40528034.

[87] van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, et al. Fast and accurate protein structure search with Foldseek. *Nat Biotechnol* 2024;42(2):243–246. doi:10.1038/s41587-023-01773-0, PMID:37156916.

[88] Krishna R, Wang J, Ahern W, Sturmels P, Venkatesh P, Kalvet I, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. *Science* 2024;384(6693):eadl2528. doi:10.1126/science.adl2528, PMID:38452047.

[89] Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature* 2024;630(8016):493–500. doi:10.1038/s41586-024-07487-w, PMID:38718835.

[90] Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, et al. Efficient evolution of human antibodies from general protein language models. *Nat Biotechnol* 2024;42(2):275–283. doi:10.1038/s41587-023-01763-2, PMID:37095349.

[91] Koh HY, Nguyen ATN, Pan S, May LT, Webb GI. Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data. *Nat Mach Intell* 2024;6(6):673–687. doi:10.1038/s42256-024-00847-1.

[92] Yang J, Lal RG, Bowden JC, Astudillo R, Hameedi MA, Kaur S, et al. Active learning-assisted directed evolution. *Nat Commun* 2025;16(1):714. doi:10.1038/s41467-025-55987-8, PMID:39821082.

[93] Shanker VR, Bruun TUJ, Hie BL, Kim PS. Unsupervised evolution of protein and antibody complexes with a structure-informed language model. *Science* 2024;385(6704):46–53. doi:10.1126/science.adk8946, PMID:38963838.

[94] Dauparas J, Lee GR, Pecoraro R, An L, Anishchenko I, Glasscock C, et al. Atomic context-conditioned protein sequence design using Ligan-dMPNN. *Nat Methods* 2025;22(4):717–723. doi:10.1038/s41592-025-02626-1, PMID:40155723.

[95] Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeron S, et al. Computational design of soluble and functional membrane protein analogues. *Nature* 2024;631(8020):449–458. doi:10.1038/s41586-024-07601-y, PMID:38898281.

[96] Medina-Ortiz D, Khalifeh A, Anvari-Kazemabad H, Davari MD. Interpretable and explainable predictive machine learning models for data-driven protein engineering. *Biotechnol Adv* 2025;79:108495. doi:10.1016/j.biotechadv.2024.108495, PMID:39645211.

[97] Frohn B, Kohyama S, Schwille P. Protein design and optimization for synthetic cells. *Nat Rev Bioeng* 2025;3(8):645–659. doi:10.1038/s44222-025-00318-1.

[98] Budharaju H, Chellappan DR, Sundaramurthi D, Sethuraman S. Protein-in-polysaccharide bioink for 3D bioprinting of muscle mimetic tissue constructs to treat volumetric muscle loss. *Carbohydr Polym* 2025;367:123993. doi:10.1016/j.carbpol.2025.123993, PMID:40817485.

[99] Agarwal K, Srinivasan V, Lather V, Pandita D, Vasanthan KS. Insights of 3D bioprinting and focusing the paradigm shift towards 4D printing for biomedical applications. *J Mater Res* 2023;38(1):112–141. doi:10.1557/s43578-022-00524-2.

[100] Liu H, Xing F, Yu P, Zhe M, Duan X, Liu M, et al. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. *Int J Biol Macromol* 2024;268(Pt 2):131623. doi:10.1016/j.ijbiomac.2024.131623, PMID:38642687.

[101] Khatun MR, Bhattacharyya A, Gunbayar M, Jo YO, Noh I. Gelatin-alginate hydrogel for near-field electrospinning assisted 3D and 4-axis bioprinting. *Carbohydr Polym* 2025;348(Pt A):122853. doi:10.1016/j.carbpol.2024.122853, PMID:39562122.

[102] Gamboa L, Zamat AH, Thiveaud CA, Lee HJ, Kulaksizoglu E, Zha Z, et al. Sensitizing solid tumors to CAR-mediated cytotoxicity by lipid nanoparticle delivery of synthetic antigens. *Nat Cancer* 2025;6(6):1073–1087. doi:10.1038/s43018-025-00968-5, PMID:40379831.

[103] Khanduja S, Bloom SMK, Raman V, Deshpande CP, Hall CL, Forbes NS. Intracellular delivery of oncolytic viruses with engineered *Salmonella* causes viral replication and cell death. *iScience* 2024;27(6):109813. doi:10.1016/j.isci.2024.109813, PMID:38799578.

[104] Chen YE, Bousbaine D, Veinbachs A, Atabakhsh K, Dimas A, Yu VK, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. *Science* 2023;380(6641):203–210. doi:10.1126/science.abp9563, PMID:37053311.

[105] Vincent RL, Gurbatri CR, Li F, Vardoshvili A, Coker C, Im J, et al. Probiotic-guided CAR-T cells for solid tumor targeting. *Science* 2023;382(6667):211–218. doi:10.1126/science.add7034, PMID:37824640.

[106] Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies. *Science* 2022;378(6622):858–864. doi:10.1126/science.add9667, PMID:36423303.

[107] Raman V, Van Dessel N, Hall CL, Wetherby VE, Whitney SA, Kolewe EL, et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. *Nat Commun* 2021;12(1):6116. doi:10.1038/s41467-021-26367-9, PMID:34675204.

[108] Camacho EM, Mesa-Pereira B, Medina C, Flores A, Santero E. Engineering *Salmonella* as intracellular factory for effective killing of tumour cells. *Sci Rep* 2016;6:30591. doi:10.1038/srep30591, PMID:27464652.

[109] Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. *Future Virol* 2011;6(9):1045–1058. doi:10.2217/fvl.11.76, PMID:21984883.

[110] Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. *Cell Host Microbe* 2018;23(1):77–88.e5. doi:10.1016/j.chom.2017.11.007, PMID:29290575.

[111] Aalipour A, Le Bœuf F, Tang M, Murty S, Simonetta F, Lozano AX, et al. Viral Delivery of CAR Targets to Solid Tumors Enables Effective Cell Therapy. *Mol Ther Oncolytics* 2020;17:232–240. doi:10.1016/j.omto.2020.03.018, PMID:32346612.

[112] Singer ZS, Pabón J, Huang H, Sun W, Luo H, Grant KR, et al. Engineered bacteria launch and control an oncolytic virus. *Nat Biomed Eng* 2025. doi:10.1038/s41551-025-01476-8, PMID:40817284.

[113] Coley A. Open problems in mathematical physics. *Phys Scr* 2017;92:093003. doi:10.1088/1402-4896/aa83c1.

[114] Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. *Lab Invest* 2022;102(11):1170–1181. doi:10.1038/s41374-022-00830-7, PMID:35922478.

[115] Vendramin R, Litchfield K, Swanton C. Cancer evolution: Darwin and beyond. *EMBO J* 2021;40(18):e108389. doi:10.15252/embj.2021108389, PMID:34459009.

[116] Lacina L, Čoma M, Dvořáková B, Kodet O, Melegová N, Gál P, et al. Evolution of Cancer Progression in the Context of Darwinism. *Anticancer Res* 2019;39(1):1–16. doi:10.21873/anticanres.13074, PMID:30591435.

[117] Purushotham AD, Sullivan R. Darwin, medicine and cancer. *Ann Oncol* 2010;21(2):199–203. doi:10.1093/annonc/mdp537, PMID:19940013.