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Introduction
Is cancer ontologically just a disease? What if we are misrepre-
senting it? Has rationalist pathology (or science’s unimaginative 
specialization) eclipsed a broader perspective of cancer as a re-
sponse/expression of evolutionary biology? In this context, is it 
theoretically permissible to approach cancer as some immunoad-
aptive endeavor (autopoiesis) of healing, or at least of coping with 
exogenous/endogenous risk factors, despite its absence of control?

A traditional hypothesis-generation method was adopted,1 
which entails observing a biophenomenon longitudinally (tumor-
precursor out-of-control cell division), formulating and refining 
targeted research questions, and then, rooted in a prior interdisci-
plinary theoretical framework, outlining (per deductive reasoning) 
a testable answer or statement apt to predict outcomes. Thus, from 

the earliest cancer records found on a 7th-century BC Egyptian 
papyrus — and Mukherjee’s cancer historiography2 — down to 
Muñoz-Castiblanco’s 3D bioprinting,3 plus García-Reyes’ and 
Bella’s artificial intelligence (AI)-driven protein electrochemical 
chip engineering,4,5 across Fussenegger’s genetic software compu-
tational biodesign,6 we begin to surface a consistent investigation 
landscape.

The goal is to address the above survey questions in order 
to substantiate our Oncodarwinian Hypothesis (OdH), which 
proposes a new medical paradigm: that of cancer as a potential 
macro-immunoadaptive response — susceptible to fine-tuning or 
reprogramming/management via AI-based 3D printed p53 super-
proteins. Such an autopsy of the illness–cancer binomial will be in-
strumentalized by a phenomenology of cancerous cells’ biological 
creativity, suggesting the existence of a Darwinian “intelligence” 
of the cell cycle.

Cancer as biological fatalism
Cancer is expressed through uncontrolled cell division. Its onset 
and prognosis are usually linked to a series of alterations in the ac-
tivity of cell cycle regulators, associated with risk factors: congeni-
tal conditions, infections, smoking, ageing, excessive exposure to 
solar radiation, alcoholic beverages, etc. For instance, cell cycle 

The Oncodarwinian Hypothesis: Cancer as a Potential 
Immunoadaptive Response and Artificial Intelligence-based 
3D Printed p53 Superproteins

Antonio Araújo*

Institute of Mathematics and Statistics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil

Received: August 16, 2025  |  Revised: November 10, 2025  |  Accepted: November 26, 2025  |  Published online: January 22, 2026

Abstract
This review presents the Oncodarwinian Hypothesis, which proposes a new medical paradigm: that of cancer as a potential 
macro-immunoadaptive response (susceptible to fine-tuning or reprogramming/management via artificial intelligence-based 
3D printed p53 superproteins). A traditional hypothesis-generation method was adopted; it entails observing a biophenom-
enon longitudinally (tumor-precursor out-of-control cell division), formulating and refining targeted research questions, and 
then, rooted in a prior interdisciplinary theoretical framework, outlining (per deductive reasoning) a testable answer or state-
ment apt to predict outcomes. Two main theoretical findings emerge from this review: the plausibility of a wireless p53 su-
perprotein molecular biochip (3D printed) and cancer cells’ dual-focus immunological nature. It will be necessary to approach 
the key issue and prognosis of (supposedly meaningless) uncontrolled cell division in a different light. Basically, the same dis-
easing cancer also constitutes a self-replicating immunoadaptive algorithm that needs to be deciphered. An interdisciplinary 
quest to unravel its “source code” involves genomic palaeontology and learning the natural selection programming language 
— for developing (personalized) artificial intelligence-assisted p53 superproteins.

Keywords: Cancer; Uncontrolled cell division; Oncodarwinian Hypothesis; Immu-
noadaptive response; Artificial intelligence-based 3D printed p53 superproteins; Can-
cer cells’ dual-focus immunological nature.
*Correspondence to: Antonio Araújo, Institute of Mathematics and Statistics, Federal 
University of Bahia (UFBA), Salvador, Bahia 40170-115, Brazil. ORCID: https://or-
cid.org/0000-0003-1077-0255. Tel: +55-71-98822-0110, E-mail: lawtec@gmail.com
How to cite this article: Araújo A. The Oncodarwinian Hypothesis: Cancer as a Po-
tential Immunoadaptive Response and Artificial Intelligence-based 3D Printed p53 
Superproteins. Explor Res Hypothesis Med 2026;11(1):e00041. doi: 10.14218/ERHM. 
2025.00041.

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/ERHM.2025.00041
https://crossmark.crossref.org/dialog/?doi=10.14218/ERHM.2025.00041&domain=pdf&date_stamp=2026-01-20
https://orcid.org/0000-0003-1077-0255
https://orcid.org/0000-0003-1077-0255
https://orcid.org/0000-0003-1077-0255
mailto:lawtec@gmail.com


DOI: 10.14218/ERHM.2025.00041  |  Volume 11 Issue 1, January 20262

Araújo A.: AI-based 3D printed p53 superproteinsExplor Res Hypothesis Med

inhibitors prevent cells from dividing when inopportune, so low 
activity of these inhibitors may trigger cancer. Similarly, positive 
regulators of cell division can lead to cancer if they are too active.7 
In most cases, such changes occur due to mutations in the genes 
that code for cell cycle regulatory proteins.8

The cancer cell (CC) has distinct properties compared with 
other cells. Many of these differences are related to its circum-
stantial behavior during cell division. Indeed, CCs can multiply 
in a petri dish without the addition of growth factors or growth-
promoting protein signals. In contrast, normal cells require growth 
factors to divide in culture.9 Furthermore, CCs manufacture their 
own growth factors. They also show growth factor pathways stuck 
in the “on” position.10 Within the body, CCs induce neighboring 
cells to produce growth factors to support them.11

A lab-grown normal cell is surrounded by several neighboring 
cells, whose presence blocks division (contact inhibition). How-
ever, CCs ignore the signals that should interrupt their division and 
pile up on top of each other in irregular layers. It is obvious that the 
ecosystem of a petri dish differs from that of a human body. How-
ever, the oncological literature speculates that the loss of contact 
inhibition in CCs outside the organism reflects the switching off or 
inactivation of a mechanism in charge of directing tissue balance 
in the body.12

This replicative perennialization/immortality is a hallmark that 
identifies CCs, allowing us to understand their functioning and la-
tent potential. They divide many times more than a normal cell, 
which performs about 40–60 rounds of replication before losing 
such capacity, ageing, and dying.13,14 CCs can exponentially out-
pace the average division rate of other cells mainly because they 
express the enzyme telomerase, whose assignment is to reverse 
the fraying (usual during each cell division) of the chromosome 
ends.15,16

There are differences between CCs and non-cancerous cells that 
do not relate directly to the cell cycle, but to the genesis of tumors. 
The CC is able to migrate (metastasis) to other parts of the body, 
as well as increase its own supply chain by forming new blood 
vessels (angiogenesis), which optimizes the logistics of inputs — 
oxygen and nutrients — to tumor cells.17 In addition, CCs do not 
manifest programmed cell death (apoptosis), at least not under the 
same conditions as normal cells, for example, due to DNA dam-
age. Recent studies have also provided evidence that CCs experi-
ence metabolic changes that interfere with and amplify or potenti-
ate their growth and division.18

Cells are programmed to restrict their own division, repair 
DNA, and prevent cancer etiology. Hence, presumably, cancer 
is a multi-step process in which several containment barriers (or 
defense lines) must fail before a critical mass forms and cells be-
come cancerous. Most cancers arise when cells undergo a series 
of mutations (changes in DNA) and begin to divide more rapidly, 
escaping the internal and external controls of that division and thus 
avoiding predestined cell death.19 How does this whole circuit of 
events unfold? Hypothetically, a cell might first lose the activity 
of a cell cycle inhibitor, causing its descendants to divide slightly 
faster. Such offspring are unlikely to be cancerous but may con-
stitute a benign tumor: a mass of cells that, although they divide 
excessively, do not have the potential to invade other tissues or 
promote metastasis.20

Over time, a cell may experience enough mutations to expand 
the action of positive regulators of the cell cycle, giving rise to 
CCs and a malignant tumor capable of invading other tissues. In 
general, the mitotic progression of this same tumor leads to the 
ever-greater spread of mutations in its cells.21 Advanced-stage can-

cers tend to develop major changes in their genomes, including 
large-scale mutations such as the loss or duplication of entire chro-
mosomes.22,23 They appear to result from inactivating mutations in 
genes that keep the genome stable, precisely by blocking the onset, 
transfer, and proliferation of mutations.24,25

These genes encode proteins that sense and repair DNA dam-
age or faults, intercept DNA-binding chemicals, preserve telomere 
caps at the ends of chromosomes, and play other key maintenance 
roles. If one of them (genomic stability factors) turns out to be 
mutated and non-functional, it is possible for multiple mutations to 
accumulate rapidly in a progenitor cell. Then, its parental lineage 
may reach a critical mass of cancer-generating mutations. Differ-
ent types of cancer involve distinct classes of mutations, and each 
individual tumor displays a unique set of genetic alterations.26,27 
However, mutations in two kinds of cell cycle regulators usually 
induce cancers: (i) overactivation of positive regulators, which be-
come oncogenic; and (ii) inactivation of negative regulators, also 
labelled tumor suppressors.28

In CCs, a growth factor receptor gene may send signals even 
when there are no growth factors, or cyclin (a family of proteins 
that controls the cell’s advancement through its cycle by activating 
enzymes such as kinases) may be expressed at alarming levels. The 
hyperactive versions and copies of these genes — cancer vectors 
— correspond to oncogenes, while their not-yet-mutated forms de-
fine proto-oncogenes.29

Mutations that convert proto-oncogenes into oncogenes follow 
varied routes. Some of them modify the amino acid sequence of 
the protein itself, changing its shape and locking it into an “always-
on” status. Other mutations imply replicative elasticity, in which a 
cell acquires extra copies of a gene and starts producing too many 
proteins. There are also cases in which a failure in DNA repair 
connects the proto-oncogene to a foreign gene, yielding an unruly 
“combo” protein.30

A large number of Ras proteins — regulators of signal transduc-
tion and targets for cancer treatments and therapies — that con-
vey signaling enzyme (or growth factor) signals are encoded by 
proto-oncogenes. Ordinarily, these proteins direct cell cycle pro-
gression only when growth factors are available. However, if one 
of them becomes overactive due to mutations, it transmits signals 
even when there is no growth factor.31 For example, oncogenic 
Ras mutations can be found in approximately 90% of pancreatic 
cancers.32 Ras is a G-family protein acting as a binary molecular 
switch. It alternates between an inactive mode (bound to a small 
guanosine diphosphate molecule) and an active mode (linked to 
a similar molecule, guanosine triphosphate). Carcinogenic muta-
tions often change the Ras structure so that it loses the ability to 
revert to the inactive form or remains stuck in a “non-stop prolif-
eration” maze.33

As for negative regulators of the cell cycle (tumor suppressor 
genes), they become less active — perhaps non-functional — in 
CCs.34 In this case, a protein that breaks cell cycle development 
in response to DNA damage may no longer detect it or may fail to 
respond properly, preventing the suppression of cancerous tumors. 
An important tumor suppressor is the p53 protein, which performs 
a key function in DNA repair. This protein acts primarily at the 
G1 end (controlling the transition from G1 to S), where it blocks 
cell cycle advancement in response to corrupted DNA and other 
unfavorable conditions.35

When a cell’s DNA is injured, a sensor protein activates p53, 
which triggers the production of a cell cycle inhibitor, interrupt-
ing the cycle at the end of G1. This pause allows time for DNA 
remediation, also dependent on p53, whose second priority is to 
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activate DNA recovery enzymes.16 If the damage is rectified, p53 
will release the cell, permitting it to proceed through the cell cycle. 
Should the lesion not be corrected, p53 will command its third 
and final mission: to initiate apoptosis (programmed cell death) in 
order not to pass on damaged DNA.36

In CCs, p53 is absent, non-functional, or less active than nor-
mal. Many cancerous tumors have a mutated expression of p53 
that may no longer bind to DNA. As p53 acts by binding to target 
genes and propelling their transcription, the unbound mutant pro-
tein is unable to fulfill its scope.37

Therefore, when p53 is deficient, a cell with tampered DNA di-
vides, and its replicas will inherit mutations due to unrepaired DNA 
from the parent cell. Over generations, cells containing defective 
p53 accumulate mutations that (i) convert proto-oncogenes into on-
cogenes, or (ii) disable other tumor suppressors. CCs without muta-
tions in p53 have probably inactivated it via alternative mechanisms 
(e.g., heightened intervention of p53-neutralising proteins).38

Cancer as biological creativity and AI-based 3D printed p53
Let’s delve into a paradigm that presupposes an essential cancer 
propaedeutic, whose cell division is only uncontrolled until we 
learn to control it. However, the construction of knowledge induc-
ing cell division governance has been postponed or impaired by 
the dogma (or premise) of this same cell splitting as an anomalous 
and ontologically pathogenic process — rather than an attempt at a 
specific, individual, and adaptive immune response to risk factors. 
In our OdH, one must simply learn to manage such an attempt.

Although biotechnology prefers to fight back, decrease, mitigate, 
and does not know how to fully control this immunoreaction,39,40 it 

may soon be susceptible to manipulation or direction by nano-bioen-
gineering, in a disruptive breakthrough concerning cell replacement. 
This represents a feasible challenge within an interdisciplinary envi-
ronment based on cooperation (mutually reinforcing feedback) with 
3D bioprinting and biocomputing technologies.41

On this point, a promising intervention field remains the evidence 
that the p53 protein encodes the most frequently mutated gene in 
human cancers.23 It is speculated that biocomputing research could 
have already been encouraged, aiming at remodeling and printing 
nanostructures of creative or self-taught (tumor suppressor) p53 
proteins, inoculated — via a tailor-made molecule delivery method 
— by viruses with an oncogenic tracer (e.g., a marker for overactive 
Ras proteins), to carry out a key task in DNA repair.

As a low-cost, easy-to-use pre-printing experimental protocol 
(according to our expertise in progress), it is advisable to down-
load a p53 protein molecule file from the Protein Data Bank (PDB) 
via the internet by searching for “<molecule name> PDB File”.42 
Import such a PDB file into MoluCAD (File → Import → PDB 
File),43 a free-to-download software with a non-complex learn-
ing curve — where p53 protein molecules might also be drawn or 
modelled, instead of downloading from the PDB. Although PDB 
files accept direct import into Blender (a free and open-source 3D 
creation suite for editing PDB files),44 note that atoms are often 
loaded without bonds.

Once the PDB file has been drawn in or imported into Molu-
CAD, export its output (File → Export → PDB File) to Blender 
through an add-on dubbed Atomic Blender (integratable with pro-
tein-designer AIs, e.g., AlphaFold 3) (Fig. 1).4,45 The next level in-
volves using Blender to reconfigure or customize p53 protein mol-
ecules (PDB files), converting them (PDB File → OBJ File) into 

Fig. 1. AlphaFold 3’s artificial intelligence (AI) biomolecule prediction/design scheme. Source: García-Reyes and colleagues.4 “AlphaFold 3 can predict the 
structure of proteins, DNA/RNA molecules, and ligands. 1) Once a sequence has been entered, 2) the software concurrently engages with multiple databases 
to assess potential genetic sequences, conformational prototypes, and structural configurations. 3) The input embedder then uses the sequencing and 
conformer information to encode and generate a composite that results in a single and pair representation. 4) The template module then integrates known 
structures obtained from the structural data search into the pair representation. 4/5) In tandem, the Multiple Sequence Alignment (MSA) Module incorpo-
rates the sequencing, pair representation, and template models to iteratively build novel base templates. 6) From here, the pairformer module uses MSA 
information to test different interacting elements, refining the predicted molecule interactions and repeatedly updating the pair and single representations. 
7) Finally, the diffusion module applies and removes noise into the algorithm to improve local stereochemistry and global structures.”
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a wireless p53 superprotein molecular chip (p53-MoleChip),46,47 
i.e., p53-MoleChips able to decode and transmit specific tumor 
genesis signals online with an AI algorithm (a smart bet could be to 
calibrate or train ChatGPT for this role) which,48 by autonomously 
diagnosing these signals (under physicians’ mobile monitoring), 
will deliver guidelines for repairing or activating tumor suppres-
sion or containment components.

Having set the scale and additional parameters of the p53-
MoleChip saved as an OBJ file, 3D printing is about to begin. De-
pending on p53-MoleChip geometry and complexity, support soft-
ware (e.g., Meshmixer) will be required to print it successfully.49 
Freely downloadable, Meshmixer not only generates printing sup-
port but also allows the user to execute molecular rescaling. Then 
choose export or print as an STL file.

Anthony Atala and colleagues introduced the challenge of 3D 
printing and therefore the predictive dilemma of intelligent life 
production lines,41 counterposing an elegant mirror to medicine. 
Léo Pio-Lopez follows him, exploring a connected issue: how 
would an artificially manufactured human being behave?50,51 In 
this regard, the prototyping of (non-rejectable) personalized p53 
simulacra may illustrate the next evolutionary step towards un-
derstanding cancer as a chance for cell cycle governance, which 
presupposes re-signifying or recycling the malignancy of a tumor.

We are facing the convergence of oncoengineering’s multiple 
synapses. Martin Fussenegger learns to program or control gene 
expression in response to ribonucleic acids (RNAs) as genetic soft-
ware, using protein-anchored central processing units. Furthermore, 
he has built and deployed — inside lab-grown cells — a dual-core 
central processing unit combining two orthogonal processors in a 
single cell to compute and metabolize a wide range of RNA inputs.52 
This represents an opportunity to master and design the algorithmic 
architecture (for nanoimplantation into CCs) of “intelligent” p53: 
synthetic, printable, AI-based superproteins that constantly adapt 
(self-learn), updating their tumor suppressor status.

Consider a human tissue with billions of cells, each one having 
its own organically integrated dual-core processor, i.e., molecular 
microprocessors fabricated by 3D printing and implanted in lab-
grown cells, whose level of accuracy would be able to perform 
a wide range of (individual bits) bitwise computations, allocating 
biochemical logic gates to a surgical repair arithmetic.6,53,54 In 
principle, this tissue would acquire an unprecedented processing 
capacity,55,56 far superior to that of a digital supercomputer, while 
consuming less energy.57–59

By enabling rational programming of mammalian single-cell 
behavior, circuit-synthetic biology drives innovation across mul-
ticore-based design, which may detect and encourage proteomic 
biocomputing opportunities (with highly accurate protein sequenc-
ing prediction) to provide applications in cancer management and 
handling.52,60–65

OdH arises from the spectrum of Evolutionary Medicine (EM), 
which is also often referred to as “Darwinian Medicine”. This 
new medical approach delves into the conceptual framework of 
evolution by natural selection to comprehend even human cell 
health.63,64 In other words, EM can explain uncontrolled cell divi-
sion and disease via evolutionary or historical causes. The high 
frequency, for example, of alleles related to sickle cell anaemia, 
especially among Afro-descendants, could only be properly un-
derstood after identifying the role of these same alleles in malaria 
resistance within endemic regions.63

According to EM, the human body is not defect-free, despite all 
its sophistication, and our body’s evolutionary adaptations appear 
to stem from selective natural processes that, today, would have 

made an organism perfectly adapted to survival.65,66 However, his-
torically, these adaptations are vulnerable for at least two reasons: 
(i) environmental circumstances modify over the course of paleon-
tological time, and so fitness changes too; and (ii) due to the limits 
of natural selection. On the other hand, human existence spaces are 
permeated or shared with risk factors and countless biological spe-
cies, including pathogens that adapt to humans as their habitat.67

Functional biological properties derive from evolutionary pro-
cesses, mainly adaptive ones. Every detail of the physiological or 
behavioral structure that has a current (or past) function or utility 
must be the result of natural selection processes acting on intra-
populational genetic variation. Consequently, it is acceptable to 
re-signify the idea of “uncontrolled cell division” as maladjust-
ments of the body to modern risk factors, reflecting vulnerabilities 
of adaptations bequeathed by our phylogenetic heritage.68

Adaptive maladjustments arise because natural selection gradu-
ally and slowly reprograms human bodies (from primate ances-
tors) considering an environment or lifestyle — e.g., devoid of a 
significant smoking prevalence — that no longer exists, and there 
was no chance or time to adjust to the novel living conditions by 
natural selection.67 In this scenario, a complete prospecting or 
demonstration of OdH presupposes decoding, through further re-
search, certain vulnerabilities (potentialized by risk factors) intrin-
sic to the evolutionary history of the cell cycle itself.

Many interesting and important controversies remain unre-
solved within the Darwinian model of carcinogenesis. For exam-
ple, tumor evolution is often portrayed as a linear sequence of 
genomic mutations and epigenetic changes synchronous with pro-
gressive drift of cellular populations from normal through prema-
lignant lesions to invasive cancer. This approach, however, while 
useful conceptually and pedagogically, is highly simplified, ignor-
ing, for example, the stochastic nature of mutations, mitigating in-
tracellular processes such as the chaperone function of heat shock 
proteins, and extracellular factors such as the potential influence 
of microenvironmental selection factors. Similarly, the role of the 
mutator phenotype remains unclear.69

OdH: CCs’ dual-focus immunological nature
Latest studies (borderline to our specific hypothesis), found 
through Google Scholar surveys using keywords (e.g., “cancer as 
immunoadaptive reply”, “cell intelligence”), support cancer as an 
evolutive process which may elicit, become a target of, deflect, and 
resist immunoadaptive responses.70–77 However, as stated earlier, 
the OdH assumes cancer is itself immunoadaptive; it involves an 
ongoing evolutive, non-pathological process (self-learning path) 
whose goal consists of adapting cell division biochemistry to epi-
genetics-reflected environmental or behavioral risk factors, such 
as diet, radiation, tabagism, sedentary lifestyle, etc.

Thus, cancer would not merely be the random target of a chain 
immune reaction (micro-immunological perspective) — since 
“immune evasion” allows tumors to bypass immunomodulation 
and tumor suppression attempts71 — but rather part of an immuno-
adaptive response or journey (macro-immunological perspective) 
at an evolutionary timescale, equivalent to geological chronology 
in wide or deep intervals (eon, era, period, and epoch) (Fig. 2).78 
As per fossil stratigraphy,79 Homo sapiens (a baby in evolution-
ary dating) arose within the current geological period (Quaternary) 
around 200,000 years ago, and some of the earliest cancer records 
were found on a 7th-century BC Egyptian papyrus.2 So far, a very 
short time in Darwinian terms.

From an integrative (dual-focus) approach to these macro- and 
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micro-immunological dimensions, our hypothetical model (OdH) 
formulates and suggests that cancer, unlike how it has been di-
agnosed for millennia, corresponds to a pathological stage of a 
non-pathological immunoadaptive self-learning process. Some-
how, this hypothesis (OdH) portrays the serialist ratio of Marx’s 
and Engels’ historical materialism, whereby the capitalist produc-
tion system represents a necessary step towards communism (the 
overflow of historical materialism from sociology into biological 
sciences has long been occurring,80–82 analogously, but in the op-
posite direction, to social Darwinism).

Under such circumstances, in theory, it is expected that AI-run 
3D printed p53 superproteins collaborate with and speed up this 
macro-immunological cancer dimension as adaptive “cell intelli-
gence”,83 while synchronously reinforcing tailored oncotherapies 
at the micro-immunological level. In any case, as far as is known, 
OdH seems to translate a radically innovative hypothesis, not yet 
incorporated into standard literature or covered by current discov-
eries or preliminary research findings. Always a first time.

AI-environmented 3D protein printing: a graphical immersion
A comprehensive (or in-depth) analysis of AI-based 3D printed 
p53 superproteins includes, with regard to AI-driven protein de-
sign (Figs. 1 and 3),4,84–97 and 3D bioprinting (Fig. 4),3,98–101 high-
lighting their potential accuracy and feasibility with respect to the 
following variables (Table 1).

AI-designed p53: clinical translation and possible limitations/
biases
Relative to clinical translation, how could AI-engineered p53 su-

perproteins enhance current oncotherapies? Bacteria and viruses’ 
potential to selectively replicate in tumors prompted microbial 
cancer treatments amid synthetic bioengineering.102–111 An im-
pressive study (from 2025), conducted by scholars at Columbia 
University, describes a symbiotic ecosystem “whereby [attenu-
ated] Salmonella typhimurium bacteria transcribe and deliver the 
Senecavirus-A RNA genome inside host cells, launching a potent 
oncolytic viral infection”.112

Hypothetically, such transcription or delivery might also aggre-
gate AI-based 3D printed p53 superproteins. In fact, encapsulated 
within bacteria, viral genomes and synthetic p53 would further 
evade circulating antiviral antibodies to reach tumors, where they 
will trigger replication or dissemination in already immunized or-
ganisms (Fig. 5, per analogy).112

Until the efficacy of AI-based 3D printed p53 superproteins is 
proven, this review paper will remain partly confined to specu-
lative territory (limitation), something typical of disruptive pro-
posals. Let us consider another example. Einstein, who for years 
worked at Bern’s Federal Bureau of Patents, mathematically pre-
dicted (1905) that during light ray propagation emitted by a point 
source, energy is not distributed continuously over larger and 
larger spaces but is comprised of a finite number of energy quanta 
located at space spots, each one moving without splitting and only 
being absorbed or generated in blocks. The concept of the photon 
— the name given to the light quantum after 1926 — was born, 
and with it the modern quantum physics era (however, years would 
pass before Einstein’s equation was validated in 1915 for experi-
ments carried out by American physicist Robert Millikan).113

Here, there could be confirmation bias, i.e., the tendency to in-
terpret or seek information that corroborates a hypothesis,1 whilst 
ignoring or disregarding evidence liable to contradict it. Prevent-
ing such bias demanded compilation of references with a broad 

Fig. 2. Geological timescale. Source: Hendricks.78
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Fig. 4. 3D bioprinting. Source: Muñoz-Castiblanco and colleagues.3 DMD, digital micromirror device.

Fig. 3. Comparison of traditional vs. artificial intelligence (AI)-run biomolecule design pipelines. Source: García-Reyes and colleagues.4 “(a) Traditional 
timeline for creating new drugs. a1-5) Partitioned timeline showing major categories of drug development (vivid colors). Subcategories describing unique 
elements are below major categories. Overall timeline from drug candidate identification to approval is ∼10–15 years. (b) Projected timeline for creating 
new drugs with AI assistance. b1-5) Same as a1-5, but with notably shorter durations driven by continued AI optimization at each step. Generative AI models 
based on validation and clinical evidence can enhance the trajectory to approval by ∼3 years.”
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longitudinal and interdisciplinary spectrum.

Future directions
In the general context of what Miao Cui, Chao Cheng, and Lanjing 
Zhang would call “High-throughput proteomics”,114 the develop-
ment of a protocol for the clinical translation only sketched out 
in the previous section clearly recommends a forward direction 
to specific viability tests around p53 viral protein as an AI-run 
wireless “electrochemical biochip” (3D printed),5 signaling routes 
for its experimental validation, interdisciplinary partnerships, 
and long-term research aims. A premise is that once comparative 
statistical significance (overall, α = 0.05, assuming a 95% confi-
dence interval and p-value < 0.05) of AI-customized p53 in tumor 
inhibition, containment (no metastasis), or prevention has been 
shown, the OdH will gather traction to bridge major knowledge 
gaps surrounding CCs’ macro-immunoadaptive (non-pathological 
dimension) responsivity and resilience — properties collaterally 
inferable from well-established literature at the onco-Darwinian 
interface (Evolutionary Theory of Cancer).115–117

Conclusions
Regarding cancer, we must overcome the dogma or diagnosis that 
defines it as nothing more than a disease whose malignancy and 
mutation collection mirror a constant: runaway cell division. Ul-
timately, what is fatal about cancer represents a one-dimensional 
dogma. Fighting this uncontrolled or cancerous cell division in-
stead of learning to control it could be tantamount to killing or 
aborting a valuable evolutionary or regenerative mechanism.

It will be necessary to approach the key issue and prognosis of 

(supposedly meaningless) uncontrolled cell division in a different 
light. Basically, for the OdH, the same diseasing cancer also con-
stitutes a self-replicating immunoadaptive algorithm that needs to 
be deciphered. The interdisciplinary quest to unravel its “source 
code” involves genomic palaeontology and learning the natural 
selection programming language — for developing (personalized) 
AI-based 3D printed p53 superproteins.
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